• EN
  • DA

Danish NationalResearch Database

  • Publications
  • Researchers
Example Finds records
water{} containing the word "water".
water supplies"{}" containing the phrase "water supplies".
author:"Doe, John"author:"{}" containing the phrase "Doe, John" in the author field.
title:IEEEtitle:{} containing the word "IEEE" in the title field.
bech{} containing the word "bech".
marie bech"{}" containing the phrase "marie bech".
orcid:0000-0002-5429-5292orcid:{} Having a particular ORCID
Need more help? Advanced search tutorial
  • Selected (0)
  • History

Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    • Save to Mendeley
    • Export to BibTeX
    • Export to RIS
    • Email citation
Authors:
  • Thomsen, N.B. ;
    Close
    unknown
  • Fischer-Cripps, A.C. ;
    Close
    unknown
  • Swain, M.V.
    Close
    unknown
DOI:
10.1016/s0040-6090(98)01101-8
Abstract:
In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models in order to quantitatively determine coating fracture properties. A non-linear elastic-plastic finite element model of the coating system which is loaded with a spherical indenter is used to simulated stress and displacement distributions in the material. The simulations are used to predict the onset of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Type:
Journal article
Language:
English
Published in:
Thin Solid Films, 1998, Vol 332, p. 180-184
Keywords:
Industrielle materialer
Main Research Area:
Science/technology
Publication Status:
Published
Review type:
Undetermined
Submission year:
1998
Scientific Level:
Scientific
ID:
2261744072

Full text access

  • Doi Get publisher edition via DOI resolver
Checking for on-site access...

On-site access

At institution

  • Technical university of dk
Feedback

Sitemap

  • Search
    • Statistics
    • Tutorial
    • Data
    • FAQ
    • Contact
  • About
    • Institutions
    • Release History
    • Cookies and Personal Data
  • Open Access
    • The Danish Open Access Indicator

Copyright © 1998–2018.

Fivu en