{"controller"=>"catalog", "action"=>"show", "locale"=>"en", "id"=>"8449889"}
  • EN
  • DA

Danish NationalResearch Database

  • Search Publications & Researchers
  • Open Access Indicator
  • Publications
  • Researchers
Example Finds records
water{} containing the word "water".
water supplies"{}" containing the phrase "water supplies".
author:"Doe, John"author:"{}" containing the prase "Doe, John" in the author field.
title:IEEEtitle:{} containing the word "IEEE" in the title field.
Need more help? Advanced search tutorial
  • Selected (0)
  • History

On-line dynamic fractionation and automatic determination of inorganic phosphorous in environmental solid substrates exploiting sequential injection microcolumn extraction and flow injection analysi

    • Save to Mendeley
    • Export to BibTeX
    • Export to RIS
    • Email citation
Authors:
  • Buanuam, Janya ;
    Close
    Mahidol University
  • Miró, Manuel ;
    Close
    University of the Balearic Islands
  • Hansen, Elo Harald ;
    Close
    Department of Chemistry, Technical University of Denmark
  • Shiowatana, Juwadee
    Close
    Mahidol University
DOI:
10.1016/j.aca.2006.03.114
Abstract:
Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified by the partitioning of inorganic phosphorous in agricultural soils. The on-line fractionation method capitalises on the accurate metering and sequential exposure of the various extractants to the solid sample by application of programmable flow as precisely coordinated by a syringe pump. Three different soil phase associations for phosphorus, that is, exchangeable, Al- and Fe-bound and Ca-bound fractions, were elucidated by accommodation in the flow manifold of the 3 steps of the Hietjles-Litjkema (HL) scheme involving the use of 1.0 M NH4Cl, 0.1 M NaOH and 0.5 M HCl, respectively, as sequential leaching reagents. The precise timing and versatility of SI for tailoring various operational extraction modes were utilised for investigating the extractability and extent of phosphorous re-distribution for variable partitioning times. Automatic spectrophotometric determination of soluble reactive phosphorous in soil extracts was performed by a flow injection (FI) analyser based on the molybdenum blue (MB) chemistry. The 3σ detection limit was 0.02 mg P L-1 while the linear dynamic range extended up to 20 mg P L-1 regardless of the extracting media. Despite the variable chemical composition of the HL extracts, a single FI set-up was assembled with no need for either manifold re-configuration or modification of chemical composition of reagents. The mobilization of trace elements, such as Cd, often present in grazed pastures as a result of the application of phosphate fertilizers, was also explored in the HL fractions by electrothermal atomic absorption spectrometry.
Type:
Journal article
Language:
English
Published in:
Analytica Chimica Acta, 2006, Vol 570, Issue 2, p. 224-231
Main Research Area:
Science/technology
Publication Status:
Published
Review type:
Peer Review
Submission year:
2006
Scientific Level:
Scientific
ID:
8449889

Full text access

  • Doi Get publisher edition via DOI resolver
Checking for on-site access...

On-site access

At institution

  • Technical university of dk
Feedback

Sitemap

  • Search
    • Statistics
    • Tutorial
    • Data
    • FAQ
    • Contact
  • Open Access
    • Overview
    • Development
    • FAQ
    • Contact
  • About
    • Institutions
    • Release History
    • Cookies and privacy policy

Copyright © 1998–2018.

Fivu en