• EN
  • DA

Danish NationalResearch Database

  • Publications
  • Researchers
Example Finds records
water{} containing the word "water".
water supplies"{}" containing the phrase "water supplies".
author:"Doe, John"author:"{}" containing the phrase "Doe, John" in the author field.
title:IEEEtitle:{} containing the word "IEEE" in the title field.
bech{} containing the word "bech".
marie bech"{}" containing the phrase "marie bech".
orcid:0000-0002-5429-5292orcid:{} Having a particular ORCID
Need more help? Advanced search tutorial
  • Selected (0)
  • History

An evolutionary model for protein-coding regions with conserved RNA structure

    • Save to Mendeley
    • Export to BibTeX
    • Export to RIS
    • Email citation
Authors:
  • Pedersen, J.S. ;
    Close
    unknown
  • Forsberg, R. ;
    Close
    Bioinformatics Research Centre (BiRC), Faculty of Science, Aarhus University, Aarhus University
  • Meyer, I.M. ;
    Close
    unknown
  • Hein, J.
    Close
    unknown
DOI:
10.1093/molbev/msh199
Abstract:
Here we present a model of nucleotide substitution in protein-coding regions that also encode the formation of conserved RNA structures. In such regions, apparent evolutionary context dependencies exist, both between nucleotides occupying the same codon and between nucleotides forming a base pair in the RNA structure. The overlap of these fundamental dependencies is sufficient to cause "contagious" context dependencies which cascade across many nucleotide sites. Such large-scale dependencies challenge the use of traditional phylogenetic models in evolutionary inference because they explicitly assume evolutionary independence between short nucleotide tuples. In our model we address this by replacing context dependencies within codons by annotation-specific heterogeneity in the substitution process. Through a general procedure, we fragment the alignment into sets of short nucleotide tuples based on both the protein coding and the structural annotation. These individual tuples are assumed to evolve independently, and the different tuple sets are assigned different annotation-specific substitution models shared between their members. This allows us to build a composite model of the substitution process from components of traditional phylogenetic models. We applied this to a data set of full-genome sequences from the hepatitis C virus where five RNA structures are mapped within the coding region. This allowed us to partition the effects of selection on different structural elements and to test various hypotheses concerning the relation of these effects. Of particular interest, we found evidence of a functional role of loop and bulge regions, as these were shown to evolve according to a different and more constrained selective regime than the nonpairing regions outside the RNA structures. Other potential applications of the model include comparative RNA structure prediction in coding regions and RNA virus phylogenetics.
Type:
Journal article
Language:
English
Published in:
Mol Biol Evol. Oct;21, 2004, Vol 10, Issue 10, p. 1913-1922
Main Research Area:
Science/technology
Publication Status:
Published
Review type:
Undetermined
Submission year:
2004
Scientific Level:
Scientific
ID:
38524212

Full text access

  • Doi Get publisher edition via DOI resolver
Checking for on-site access...

On-site access

At institutions

  • Aarhus university.en
  • Copenhagen university.en
Feedback

Sitemap

  • Search
    • Statistics
    • Tutorial
    • Data
    • FAQ
    • Contact
  • About
    • Institutions
    • Release History
    • Cookies and Personal Data
  • Open Access
    • The Danish Open Access Indicator

Copyright © 1998–2018.

Fivu en