- Authors:
- DOI:
- 10.1364/OE.21.009215
- Abstract:
- Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode coupling of higher-order modes. We analyze the modal regimes of the fibers having a mode field diameter of 60 µm by the cross-correlated (C2) imaging method in different wavelength ranges and evaluate the sensitivity of the modal content to various input-coupling conditions. As a result, we experimentally identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations.
- Type:
- Journal article
- Language:
- English
- Published in:
- Optics Express, 2013, Vol 21, Issue 8, p. 9215-9229
- Main Research Area:
- Science/technology
- Publication Status:
- Published
- Review type:
- Peer Review
- Submission year:
- 2013
- Scientific Level:
- Scientific
- ID:
- 240575879