Bounding the number of points on a curve using a generalization of Weierstrass semigroups - Danish National Research Database-Den Danske Forskningsdatabase

^{1} Department of Applied Mathematics and Computer Science, Technical University of Denmark^{2} Mathematics, Department of Applied Mathematics and Computer Science, Technical University of Denmark^{3} Aalborg University

DOI:

10.1007/s10623-012-9685-3

Abstract:

In this article we use techniques from coding theory to derive upper bounds for the number of rational places of the function field of an algebraic curve defined over a finite field. The used techniques yield upper bounds if the (generalized) Weierstrass semigroup (J Pure Appl Algebra 207(2), 243–260, 2006) for an n-tuple of places is known, even if the exact defining equation of the curve is not known. As shown in examples, this sometimes enables one to get an upper bound for the number of rational places for families of function fields. Our results extend results in (J Pure Appl Algebra 213(6), 1152–1156, 2009).

Type:

Journal article

Language:

English

Published in:

Designs, Codes and Cryptography, 2013, Vol 66, Issue 1-3, p. 221-230

Keywords:

Algebraic function field; Rational place; Linear code; AG-code; Weierstrass semigroup