^{1} The Department of Science, Systems and Models, Roskilde University^{2} IMFUFA, Department of Science and Environment, Roskilde University

Abstract:

An Attracting Dynamics is a triple (f,W,a), where W is an open subset of the R(iemann) S(phere), f is a holomorphic map from W into the RS and a is an attracting periodic point for f. Denote by B(a) the attracted basin of the orbit of a for f. Two attracting dynamics (f,W,a) and (f',W',a') are i) conformally equivalent iif there is a MÃ¶bius transformation M which maps a to a' and which conjugates dynamics. or ii) hybridly equivalent iff there exists a quasi conformal homeomorphism of RS to itself which maps a to a', which conjugates dynamics and with dbar derivative identically zero on the complement of B(a). The moduli space for the attracting dynamics (f,W,a) is the space of attractings dynamics (f,W,a') which are hybridly equivalent to (f,W,a). The talk will discuss properties of moduli spaces of different attracting dynamics.

Type:

Conference abstract

Language:

English

Main Research Area:

Science/technology

Review type:

Undetermined

Conference:

24th Nordic and 1st Franco-Nordic Congress of Mathematicians, 2005