^{1} Department of Electrical Engineering, Technical University of Denmark^{2} Technical University of Denmark

DOI:

10.1109/8.86918

Abstract:

The current near a right-angled corner on a perfectly conducting flat scatterer illuminated by a plane wave is expressed as a sum of three currents. The first is the physical optics current, which describes the surface effect. The second is the fringe wave current, which is found from the half-plane solution and accounts for the distortion of the current caused by the edges. The third is the corner current, which is found from the numerical solution to the electric-field integral equation applied to the square plate, and accounts for the distortion of the current caused by the corner. It is found that the corner current for the right-angled corner, illuminated from a forward direction, consists mainly of two edge waves propagating along the edges forming the corner. Analytical expressions for these edge wave currents are constructed from the numerical results. A corner diffracted field is calculated by evaluating the asymptotic corner contributions to the radiation integral over the sum of the three currents. It is found that the corner contribution from the edge wave currents in some cases is of the same size as the corner contributions from the physical optics current and the fringe wave current

Type:

Journal article

Language:

English

Published in:

I E E E Transactions on Antennas and Propagation, 1991, Vol 39, Issue 7, p. 976-984