^{1} Department of Economics, Faculty of Social Sciences, Københavns Universitet^{2} Japan Women's University^{3} Department of Economics, Faculty of Social Sciences, Københavns Universitet

DOI:

10.1016/j.laa.2006.06.018

Abstract:

We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions for matrix convexity which are necessary and locally sufficient, and they allow us to prove the existence of gaps between classes of matrix convex functions of successive orders, and to give explicit examples of the type of functions contained in each of these gaps. The given conditions are shown to be also globally sufficient for matrix convexity of order two. We finally introduce a fractional transformation which connects the set of matrix monotone functions of each order n with the set of matrix convex functions of the following order n + 1

Type:

Journal article

Language:

English

Published in:

Linear Algebra and Its Applications, 2007, Vol 420, Issue 1, p. 102-116

Keywords:

Faculty of Social Sciences; matrix convex function; polynomial